Tamely Ramified Morphisms of Curves and Belyi’s Theorem in Positive Characteristic

نویسندگان

چکیده

Abstract We show that every smooth projective curve over a finite field $k$ admits tame morphism to the line $k$. Furthermore, we construct with no such map when is an infinite perfect of characteristic two. Our work leads refinement Belyi theorem in positive characteristic, building on results Saïdi, Sugiyama–Yasuda, and Anbar–Tutdere.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tamely Ramified Extension’s Structure

The structure of an algebraic tamely ramified extension of a henselian valued field is studied. We will prove, in theorem 3.2, the following statement: A finite extension L/K is tamely ramified if and only if the field L is obtained from the maximal unramified extension T by adjoining the radicals m √ t, with t ∈ T, m ∈ N, m ≥ 1, (m, p) = 1, where p is the characteristic of the residue class fi...

متن کامل

Galois groups of tamely ramified p - extensions par Nigel BOSTON

Very little is known regarding the Galois group of the maximal p-extension unramified outside a finite set of primes S of a number field in the case that the primes above p are not in S. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.

متن کامل

Tamely Ramified Towers and Discriminant Bounds for Number Fields-II

The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R0(2m) be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR0(2m). Define R1(m) to be the minimal root discriminant of totally real number fields of degree m and put α1 = lim infmR1(m). Assuming the Generalized Riemann Hypothesis, α...

متن کامل

Tamely Ramified Towers and Discriminant Bounds for Number Fields

The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R2m be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR2m. One knows that α0 ≥ 4πeγ ≈ 22.3, and, assuming the Generalized Riemann Hypothesis, α0 ≥ 8πeγ ≈ 44.7. It is of great interest to know if the latter bound is sharp. In 1978,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab309